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Abstract

Matrix multiplication (MM) is pivotal in fields from deep learning to scientific
computing, driving the quest for improved computational efficiency. Accelerating
MM encompasses strategies like complexity reduction, parallel and distributed
computing, hardware acceleration, and approximate computing techniques, namely
AMM algorithms. Amidst growing concerns over the resource demands of
large language models (LLMs), AMM has garnered renewed focus. However,
understanding the nuances that govern AMM’s effectiveness remains incomplete.
This study delves into AMM by examining algorithmic strategies, operational
specifics, dataset characteristics, and their application in real-world tasks. Through
comprehensive testing across diverse datasets and scenarios, we analyze how
these factors affect AMM’s performance, uncovering that the selection of AMM
approaches significantly influences the balance between efficiency and accuracy,
with factors like memory access playing a pivotal role. Additionally, dataset
attributes are shown to be vital for the success of AMM in applications. Our results
advocate for tailored algorithmic approaches and careful strategy selection to
enhance AMM’s effectiveness. To aid in the practical application and ongoing
research of AMM, we introduce LibAMM —a toolkit offering a wide range of AMM
algorithms, benchmarks, and tools for experiment management. LibAMM aims
to facilitate research and application in AMM, guiding future developments towards
more adaptive and context-aware computational solutions.

1 Introduction

Matrix multiplication (MM) is essential across computational domains, particularly in machine learning
and scientific simulations. While efforts to improve MM’s performance and scalability [24, 38]
underscore its importance, MM can dominate up to 90% of processing time in some applications,
posing a significant bottleneck. Approximate matrix multiplication (AMM) [17, 12, 34] offers a
solution by trading exact accuracy for increased efficiency in contexts where absolute precision is
not critical, such as machine learning inference from VGG-like models [6] to GPT-3 LLMs [12].
One may further combine AMM with advances in algorithmic design [32], parallel and distributed
computing [4, 26, 37], and hardware technology [11, 18] to mitigate the computational demands of
traditional MM, highlighting its potential to revolutionize MM-intensive applications.

The advancement of AMM methods has brought forth a range of techniques designed to meet various
computational challenges. These techniques strategically utilize approximations to enhance matrix
operation efficiency [13, 16]. Central to AMM is the concept of simplifying computations by modulating
calculation detail, prioritizing matrix elements vital to the outcome and downplaying lesser ones [34,
2]. This approach embodies a crucial trade-off: it lowers computational load in exchange for
reduced accuracy, a compromise finely adjusted through parameter ω. AMM encompasses three
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principal approximation strategies: pruning-based methods that cut superfluous calculations for
better efficiency [21, 13, 17], extraction-based techniques that identify and leverage key elements or
patterns to streamline computations [36, 29, 2, 23, 6, 25], and hybrid approaches that merge these
methods [22, 34, 9, 31].

Despite the progress in AMM, a comprehensive and impartial comparison remains elusive, often
leading to confusing and sometimes contradictory advice for algorithm selection and task-specific
modifications. This confusion stems from several factors: First, the appeal of AMM across various
downstream tasks, each favoring a different optimal approach, results in varied conclusions. For
example, Adelman et al. [1] favor pruning-based AMM for machine learning training, whereas Blalock
et al. [6] recommend extraction-based AMM for inference tasks. Second, the evaluation of some
AMM algorithms lacks breadth over representative workloads. Mroueh et al.’s [25] assertion that
extraction-based AMM yields only minor inaccuracies is primarily based on synthetic datasets, which
may not reflect real-world distribution complexities. Third, inconsistencies in AMM implementation
and the standards for baselines raise further issues. The mixture of just-in-time (JIT) and static
compilation methods [1, 6, 29] complicates fair performance evaluations among AMM implementations.
Additionally, the use of manually coded nested loop MM as a baseline by some studies [36, 25, 16]
diverges from modern data science practices, which often employ optimizations like cache-aware
data loading and SIMD instructions [28].

To address these gaps, our study delves into a comprehensive empirical analysis of AMM techniques
across key algorithmic dimensions. We structure our investigation around three main axes: (a) We
conduct a unified static compilation analysis of twelve AMM algorithms alongside two benchmark MM
baselines to measure their performance and efficiency. (b) We leverage eight real-world datasets from
a spectrum of disciplines to test the versatility and robustness of AMM strategies. (c) We examine four
statistics and machine learning applications to assess AMM’s practical utility in various downstream
tasks. Our methodology intentionally avoids optimizations that cater to specific algorithms or
hardware setups, focusing instead on principles with broad applicability [25, 16]. This approach aims
to provide a wide-ranging and insightful examination of the AMM domain, highlighting the diverse
factors critical for progress in the field. In our study, we discovered insights crucial for advancing MM
acceleration via approximation. Key takeaways from our experiments include:

• Among three approximation strategies, pruning-based and hybrid AMM is notably more
beneficial than extraction-based AMM (Section 3.1).

• For all evaluated AMM, minimizing memory overhead is the key to practical performance benefits,
especially when further leveraging hardware accelerations like GPUs (Section 3.2).

• For all evaluated AMM, the accuracy greatly depends on dataset attributes like value skewness
and non-zero distribution, requiring improvements of the error bound (Section 3.3).

• In downstream tasks where approximate computing is allowed, pruning-based and hybrid AMM
significantly outperform extraction-based AMM. Specifically, they are superior in both reducing
processing latency and conducting the task-aligned approximation with less error (Section 3.4).

To support and inspire ongoing and future research, we introduce LibAMM , a framework within
the PyTorch ecosystem. LibAMM is offered as an open-source tool at https://github.com/
intellistream/LibAMM. It aggregates prevalent AMM algorithms, benchmark datasets, and scripts
to easily reproduce our experimental results.

2 Preliminary

2.1 Problem Formulation

Let A ∈ RM×K and B ∈ RK×N denote two matrices intended for multiplication (denoted as
MM(·)), aiming to calculate the product C = MM(A,B) ∈ RM×N . With AMM, the objective shifts
towards computing an approximation C̃ ∈ RM×N , which seeks to balance computational efficiency
with the fidelity of the approximation to C. Efforts in AMM focus on developing an algorithm AMM(·)
that takes A and B as inputs and applies approximation techniques to produce C̃ with reduced
computational demand. The result of this process is expressed as C̃ = AMM(A,B) ∈ RM×N , with
each element c̃ij signifying the approximated value corresponding to the element cij in the traditional
product C. The critical performance metrics for AMM are Processing Latency (l), AMM Error (ϵ),
and Approximation Impact Factor (∆E). l indicates the time efficiency of AMM, by measuring the
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Table 1: AMM algorithms and MM baselines investigated
Category Algorithm Name Descriptions

Purning-
based AMM

INT8 [21] Purning 32-bit into 8-bit
CRS [13] Purning elements by sampling
CS [17] Purning elements by sketching

Extraction-
based AMM

COOFD [36] Extracting singular value, for entire matrices
BLOCKLRA [29] Extracting singular value, for blocks
FASTJLT [2] Extracting JL embeddings
VQ [23] Extracting KNN centroids
PQ [6] Similar to VQ, more efficient codebook

Hybrid AMM

RIP [22] Randomized JL embeddings extraction
SMP-PCA [34] Similar to RIP, scaling values for higher accuracy
WEIGTHEDCR [9] Extract the weight information during sampling
TUGOFWAR [31] Extract the median and select the optimal after sketching

Baseline MM NLMM [36] The manual, brute-force, nested loop implementation of MM
LTMM [28] LibTorch’s optimized implementation of MM

time from A and B are presented to C̃ is eventually produced. ϵ, calculated by ∥C̃−C∥F

∥C∥F
, measures

the frobenius normalized accuracy [6, 34] of AMM to standard MM. The ∆E, calculated through
EMM − EAMM , contrasts the downstream application error when employing MM (EMM ) against
that when using AMM (EAMM ). This metric effectively measures the impact of AMM on prediction
accuracy within downstream tasks, capturing both the potential benefits and drawbacks.

2.2 Existing AMM Revisit

Based on how to handle the matrix information, we broadly classify AMM algorithms into three
categories: pruning-based, extraction-based, and hybrid. We summarize representative AMM algorithms
and the MM baselines in Table 1, more related work is discussed in Section 4.

2.2.1 Pruning-based AMM

Pruning-based AMM emphasizes the selective removal of redundant information from matrices. This
approach can be implemented at two levels of granularity: bit-wise pruning and element-wise
pruning. Bit-wise pruning involves compressing each matrix element by using fewer binary bits. A
notable example is INT8, which quantizes 32-bit floating-point elements into 8-bit signed integers.
Conversely, element-wise pruning keeps the entire binary representation for certain elements and
completely discards others. Techniques for achieving this include CRS (column row sampling) and
count sketching mechanisms used in CS (count sketch-based AMM). Pruning-based AMM algorithms
are lightweight, but also reliant on the nature of the underlying data.

2.2.2 Extraction-based AMM

Extraction-based AMM focuses on identifying and utilizing higher-level characteristics from matrix
elements. It preserves these characteristics in intermediate structures, which are then used to facilitate
AMM computations. This approach is favored because operations on these intermediate structures are
significantly faster than traditional MM processes. Various matrix attributes serve to accomplish
this goal. Frequent Direction-based methods, such as COOFD, iteratively isolate significant
singular values directly from the input matrices. In contrast, the BLOCKLRA algorithm applies
singular value decomposition to separate blocks within the matrices, offering a balance between
precision and computational efficiency compared to comprehensive singular value decomposition as
in COOFD. FASTJLT employs a different tactic by extracting Johnson-Lindenstrauss (JL) embedding
properties of the matrices through Walsh-Hadamard transformations. Beyond leveraging intermediate
matrix structures, incorporating a codebook that catalogues K-nearest neighbor (KNN) centroids
of matrix rows or columns also facilitates effective information extraction for AMM. This technique
is implemented in VQ (vector quantization) and PQ (product quantization), with PQ typically
achieving faster processing times for larger matrices by optimizing the number of KNN centroids
through the Cartesian product of subspaces. While extraction-based methods theoretically maintain
higher accuracy by preserving essential information during feature extraction, the computational and
memory demands of this extraction process may surpass those of standard MM.
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2.2.3 Hybrid AMM

Hybrid AMM methods combine pruning and extraction techniques to balance processing latency with
accuracy. These methods aim to accelerate feature extraction while allowing for selective information
pruning to enhance efficiency. For instance, RIP and SMP-PCA introduce randomness to the
Johnson-Lindenstrauss (JL) embeddings extraction process, which is inherently deterministic in
approaches like FASTJLT, achieving a speed boost. SMP-PCA distinguishes itself by incorporating
an additional value scaling step post-randomly pruned JL transform, which theoretically yields
higher accuracy compared to RIP. Other hybrid AMM strategies focus on refining element-wise
pruning through targeted feature extraction. For example, WEIGTHEDCR leverages extracted weight
information for more informed sampling, presenting a significant improvement over the indiscriminate
sampling seen in CRS. Similarly, the TUGOFWAR method identifies the optimal sketch from a set of
random sketches, prioritizing the retention of information over the more arbitrary selection found in
CS. By leveraging the strengths of both pruning and extraction, hybrid AMM methods stand to deliver
superior performance, striking an optimal balance between speed and precision.

2.3 Tuning Knob ω of AMM Algorithms

The tuning parameter ω plays a crucial role in managing the trade-off between computational
efficiency (l) and accuracy (ϵ)in AMM algorithms. This section elucidates the influence of ω across a
spectrum of AMM methodologies, noting that ω has no bearing on INT8, LTMM, and NLMM. The
latter two algorithms, being precise MM implementations, and INT8, although an AMM algorithm, do
not utilize this adjustable parameter.

VQ and PQ showcase an innovative approach by adjusting the number of K-nearest neighbor (KNN)
centroids relative to the row count of the input matrix A through ω. Unlike other AMM methods that
rely on intermediate matrices, these algorithms employ codebooks for feature encapsulation, linking
each KNN centroid to a unique code within the codebook. This adjustment effectively moderates the
codebook’s capacity and computational overhead, striking a balance between latency and precision.

For feature extraction-focused algorithms like COOFD and FASTJLT, ω is instrumental in
determining the dimensionality of the feature space extracted in relation to input matrix A’s column
volume. By converting singular values or JL embeddings of A,B into intermediate matrices, the
size of which is configurable through ω, these algorithms propose a trade-off: smaller intermediate
structures facilitate quicker computations at the expense of accuracy, while larger configurations
promise enhanced accuracy at the cost of increased computational time. This principle is similarly
applicable to hybrid AMM approaches such as RIP and SMP-PCA, which incorporate randomized
optimizations in the feature extraction phase to improve efficiency.

In the context of BLOCKLRA, ω significantly impacts the sizing of the feature extraction matrix in
proportion to the eigenspace of A,B, diverging from the full matrix consideration to a block-wise
feature extraction perspective. This nuanced application of ω alters the dimensionality of intermediate
matrices, thereby modifying computational dynamics.

Lastly, for CRS, CS, WEIGTHEDCR, and TUGOFWAR, the parameter ω governs the proportion
of matrix elements preserved after pruning, employing sampling or sketching techniques to forgo
computations on specific elements within A,B. The allocation determined by ω serves to represent
the characteristics of the majority pruned, leveraging statistical properties such as mean or variance
to approximate the impact of excluded elements.

3 Empirical Studies

In the following section, we first introduce experimental configurations and then present the results.

Evaluation Configurations. Our experimental framework is meticulously designed to ensure a
comprehensive and equitable assessment of AMM algorithms across a spectrum of real-world and
synthetic datasets. To this end, we delineate our evaluation methodology under two principal
components: the datasets employed and the detailed implementation nuances of AMM algorithms. In
the evaluation, we set ω as 10% if not otherwise specified.

Datasets. The core of our benchmark suite is derived from MatrixMarket [27], encapsulating a
diverse array of real-world workloads including but not limited to ECO, DWAVE, AST , UTM, RDB,

4



Name Application Field Size
ECO Economics 207× 260
DWAVE Integrated Circuit 512× 512
AST Astrophysics 765× 765
UTM Plasma Physics 1700× 1700
RDB Chemical Engineering 2048× 2048
ZENIOS Air Traffic 2873× 2873
QCD Quantum Physics 3072× 3072
BUS Land Traffic 4929× 10595

Table 2: Real-world Workloads for
Comparing AMM Algorithms

Downstream Task Dataset Matrix Size Proportion
PCA [33, 30] SIFT10K 128× 10000 13.2%
Machine Learning
Training [1]

MNIST 392× 60000 ·
60000× 392

21.4%

Machine Learning
Inference [6]

CIFAR100 10000× 512 ·
512× 100

86.4%

Unitary
Transformation [20, 15]

QCD 3072× 3072 100%

Table 3: Dataset and Latency Proportion of AMM-
Replaceable MM in Downstream Tasks

ZENIOS, QCD, and BUS, detailed in Table 2. These datasets are preprocessed to normalize matrix
elements within the range of −1 to +1, covering a wide breadth of applications from economic
modeling (ECO) to power flow analysis (BUS). Specifically, we linearly align the maximum value to 1
and minimum value to -1, and we leave the more complicated and application-specific normalization
such as L2 Normalization [28] for future works. Complementing these real-world datasets, we also
generate synthetic workloads using LibTorch functionalities like torch::rand.

Downstream Tasks. We examine a suite of downstream tasks where the integration of AMM is
particularly appealing. These tasks include Principal Component Analysis (PCA) [33, 30], Machine
Learning Training [1] and Inference [6] phases, and Unitary Transformation [20, 15]. Detailed
descriptions of those applications are presented in Appendix A. Note that, while some pruning-based
AMM methods under element quantization like INT8 can seamlessly integrate into complex models,
such as transformer-based large language models [35, 12], incorporating other AMM strategies (e.g.,
CRS or SMP-PCA) into these advanced models poses a significant challenge. As such, we follow
[1] for training and [6] for inference, and leave more intricate models in future research.

Table 3 presents an analysis of the datasets utilized, highlighting the proportion of latency associated
with AMM-replaceable MM operations within these downstream tasks. By integrating these tasks into
the LibTorch ecosystem, we capitalize on its LTMM functionality for MM operations. The machine
learning training and inference procedures, in particular, engage the PyTorch frontend. We bind
PyTorch calls to static compilation, thus isolating the impacts of JIT on the execution of AMM or MM.

Implementation. We unify the implementation of the examined AMM algorithms into one C++
codebase, using static compilation to guarantee consistency across experiments. We use the IEEE
754 32-bit floating-point (FP32) format for representing matrix elements, and take the advantage of
LibTorch C++ API [28], thereby inheriting AVX-512 instructions of FP32 from LibTorch. While
certain AMM algorithms might benefit from algorithm-specific optimizations—like Bernoulli sampling
probabilities in CRS [1] or the MADDNESS hash function in PQ [6]—we exclude these from
our primary evaluation. This exclusion is to avoid bias introduced by optimizations that rely on
assumptions not universally applicable, aiming for evaluations that are as inclusive and applicable as
possible. We focus on in-memory MM and AMM, and leave out-of-memory case [38] or disk-memory
corporation [3] for future works.

Deployment. Our evaluation primarily unfolds on a Silver 4310 processor, with both MM and AMM
seamlessly adapting to parallel and distributed computing through a straightforward block partition
approach [6]. This directs our focus towards single-threaded evaluation. Notably, we include an
experiment to explore AMM’s performance in a parallelized context, utilizing an I7-13700K CPU and
an RTX A6000 GPU, to assess its potential on parallel hardware architectures.

3.1 Algorithmic Strategies

We first investigate how different algorithmic strategies affect the effectiveness of AMM, concerning
both processing latency and accuracy, as summarized in Table 4.

Observation 1. Contrary to common belief [36, 29, 2, 23, 6, 25], pruning-based
and hybrid strategies are more practically useful than extraction-based strategy.

In sufficiently large datasets, pruning-based AMMs, especially CRS and INT8, significantly
outperform others, with CRS reducing latency by 56.3% and 99.9% against the LTMM benchmark
in ECO and BUS, respectively. While extraction-based methods typically show higher latencies
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Algorithms Processing Latency l (×103 ms) AMM Error ϵ
ECO DWAVE AST UTM RDB ZENIOS QCD BUS ECO DWAVE AST UTM RDB ZENIOS QCD BUS

Pruning-based
INT8 0.01 0.03 0.03 1.09 0.95 2.23 2.04 13.07 0.0193 0.0234 0.0122 0.0200 0.0102 0.0000 0.0001 0.0034
CRS 0.10 0.10 0.91 0.90 0.96 0.99 1.06 1.88 0.5939 0.0203 0.0001 2.4437 0.0050 0.0003 0.0044 1.0000
CS 0.18 0.21 0.48 1.12 1.48 2.21 2.64 14.28 0.3754 0.3015 0.0602 2.4521 0.0287 0.0668 0.0168 0.0034

Extraction-based

COOFD 3.09 44.72 31.73 277.81 730.73 1092.58 1302.97 7999.6 0.1587 0.0353 0.0131 0.9640 0.0088 0.0038 0.0059 0.0000
BLOCKLRA 1.17 3.72 7.78 46.70 20.23 43.53 50.40 31.45 0.1129 0.0004 0.0000 0.8705 0.0001 0.0000 0.0001 0.0770
FASTJLT 2.32 2.35 6.28 29.63 31.45 40.82 40.74 621.69 0.4654 0.2205 0.1514 2.4824 0.0770 0.0038 0.1177 0.1002
VQ 2.90 4.79 7.37 31.18 51.34 112.94 136.17 1088.6 0.2780 0.0019 0.0000 0.9211 0.0003 0.0000 0.0005 0.0000
PQ 3.96 1169.5 50.64 102.32 124.85 186.81 202.07 531.48 0.5436 0.0000 0.0065 0.9502 0.0039 0.0010 0.0016 0.0001

Hybrid

RIP 0.75 0.91 1.26 1.60 1.80 1.60 2.08 7.15 0.4502 0.0846 0.3370 2.4760 0.1733 0.0060 0.0396 0.0238
SMP-PCA 1.81 1.34 1.54 2.48 2.68 2.51 3.16 6.97 0.3618 0.0029 0.0001 2.4676 0.0004 0.0000 0.0002 0.0031
WEIGTHEDCR 0.48 0.39 1.46 1.57 1.45 1.46 1.72 2.09 4.1807 0.0185 0.0008 2.5278 0.0047 0.0002 0.0044 5217.1
TUGOFWAR 12.70 25.66 27.56 25.29 25.76 42.17 42.32 55.46 0.4421 0.0368 0.0926 2.4753 0.0058 0.0112 0.0377 0.0032

Baselines NLMM 1.41 4.01 10.72 124.41 433.57 704.94 1418.78 9244.8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LTMM 0.10 0.12 0.11 4.85 6.52 11.14 11.43 60.60 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 4: Overall performance comparison of processing latency l and AMM Error ϵ.
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Figure 2: Impacts of tuning knob ω.

than both LTMM and NLMM, PQ within this group stands out, albeit still lagging behind pruning-
based solutions. Hybrid AMMs, notably SMP-PCA, offer a compromise, demonstrating substantial
efficiency improvements on BUS over LTMM.

Extraction-based AMMs tend to deliver higher accuracy than pruning-based approaches,
illustrated by the near-zero errors in BUS dataset scenarios, in stark contrast to the higher errors
associated with pruning methods like CRS. Hybrid AMMs, with SMP-PCA as a prime example,
strike a balance, achieving low errors in certain datasets and showcasing the trade-off between
efficiency and accuracy. This underscores the need for careful selection of AMM strategies to align
with the specific accuracy requirements of an application.

Observation 2. Pruning-based AMM faces scalability challenges at larger data sizes.

In our analysis focused on the scalability of AMM algorithms, matrices A,B were generated through
the torch::rand function, assigning element values between 0 and 1. Keeping the columns of A and
the dimensions of B constant at 2500, we varied the row count of A from 100 to 50000. Results are
detailed in Figures 1(a) and 1(b).

A critical takeaway from our findings is that pruning-based methods encounter notable
scalability challenges when data sizes increase. While initially demonstrating latency reductions
at moderate data scales (1000 ∼ 10000 rows), algorithms such as INT8, CRS, and CS begin to
struggle as the dataset size exceeds certain thresholds. This scalability issue is particularly marked
when comparing the latency spike observed in these pruning-based algorithms against the more stable
performance of hybrid and extraction-based methods at larger dataset sizes. Hybrid AMM methods,
for instance, while showing a balance between efficiency and accuracy, do not experience the same
degree of scalability challenges as their pruning-based counterparts. Similarly, extraction-based
algorithms, although generally slower, maintain a consistent error rate and do not exhibit the same
sharp increase in processing latency with data scale.

Observation 3. There is a complex performance trade-off of AMM due to ω.

In our analysis of the tuning parameter ω’s influence on AMM algorithms, we utilized input matrices
A,B with 2500× 2500 dimensions, generated via torch::rand. By varying ω between 0.04% and
50%, we observed its impact on processing latency (l) and AMM error (ϵ), with findings illustrated
in Figure 2. It’s important to note that ω does not affect LTMM, NLMM, or INT8 (Section 2.3).

Our results highlighted a complex performance trade-off landscape. Generally, increasing ω
leads to lower ϵ for most algorithms, except CS, but at the expense of increased l. This trade-off
between minimizing error and managing latency varies significantly among algorithms. For instance,
CRS can reduce l by up to 60% by tolerating an ϵ rise from 0.02 to 0.28. In contrast, BLOCKLRA
consistently keeps ϵ below 0.01 and indicates a narrower trade-off scope. Interestingly, CS deviates
from the expected trend of reduced ϵ with higher ω, attributed to its relatively loose error bound.
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Algorithms Smallest Dataset ECO (207× 260) Moderate Dataset UTM (1700× 1700) Largest Dataset BUS (4929× 10595)
Mem Stall L1D Stall L2 Stall L3 Stall C_Stall Useful Mem Stall L1D Stall L2 Stall L3 Stall C_Stall Useful Mem Stall L1D Stall L2 Stall L3 Stall C_Stall Useful

Pruning-based
INT8 99.12 0.55 0.21 0.12 0.00 0.00 73.96 24.91 1.11 0.01 0.00 0.00 54.40 29.45 9.10 7.05 0.00 0.00
CRS 32.34 25.07 23.23 19.36 0.00 0.00 22.21 1.73 1.59 1.35 59.30 13.82 62.44 17.60 9.99 8.70 0.00 1.27
CS 82.72 8.61 4.77 3.90 0.00 0.00 56.76 21.85 14.12 7.27 0.00 0.00 29.05 24.62 23.93 22.39 0.00 0.00

Extraction-based

COOFD 22.27 0.59 0.40 0.26 62.37 14.11 24.10 0.21 0.07 0.06 58.52 17.03 23.53 0.57 0.44 0.25 59.45 15.76
BLOCKLRA 45.26 2.47 1.37 0.93 11.68 38.29 75.72 8.37 5.16 3.55 0.00 7.20 80.82 0.55 0.29 0.23 0.00 18.10
FASTJLT 20.43 0.59 0.50 0.40 65.54 12.54 79.48 0.53 0.30 0.24 0.00 19.45 96.71 2.39 0.52 0.39 0.00 0.00
VQ 21.02 1.06 0.89 0.73 63.46 12.84 33.09 23.08 22.15 21.68 0.00 0.00 27.81 24.56 23.97 23.66 0.00 0.00
PQ 21.62 0.66 0.55 0.42 63.03 13.72 20.71 0.73 0.59 0.49 64.68 12.80 26.13 5.43 4.91 3.37 44.53 15.63

Hybrid

RIP 20.65 0.76 0.68 0.47 64.80 12.63 25.60 1.89 1.14 0.84 53.26 17.27 79.62 12.91 4.25 3.23 0.00 0.00
SMP-PCA 20.36 0.58 0.55 0.43 65.57 12.51 24.22 1.91 1.13 0.93 55.80 16.02 65.76 16.90 9.85 7.49 0.00 0.00
WEIGTHEDCR 21.66 2.25 2.10 1.70 59.62 12.68 21.25 2.28 1.70 1.48 60.10 13.20 38.66 26.43 19.08 15.83 0.00 0.00
TUGOFWAR 20.26 0.34 0.30 0.19 66.41 12.50 21.79 0.73 0.46 0.33 62.86 13.83 46.15 4.97 1.80 1.32 8.19 37.57

Baselines NLMM 98.55 0.88 0.33 0.23 0.00 0.00 50.23 25.33 14.36 10.09 0.00 0.00 40.78 27.24 20.20 11.77 0.00 0.00
LTMM 39.16 23.48 21.41 15.95 0.00 0.00 98.73 0.35 0.13 0.10 0.00 0.68 98.52 1.17 0.17 0.14 0.00 0.00

Table 5: The proportion of processor cycles (%). Mem Stall, L1D Stall, L2 Stall and L3 Stall are
disjointly caused by pending memory operations, while Computing Stall (C_Stall) is caused by
pending computing operations.
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3.2 Operational Specifics

We examined the impact of operational specifics on AMM performance, categorizing processor
operations into memory operations and computing operations, using PAPI [8] to trace processor
cycles during AMM. Our analysis on a Silver 4310 processor identified cycles affected by memory
operations as 1) Mem Stall, 2) L1D Stall, 3) L2 Stall, and 4) L3 Stall. Additionally, we noted 5)
Computing Stall, caused by pending computing operations, and 6) Useful cycles, where the processor
efficiently executes without memory or computing stalls. Importantly, stalls are only recorded when
operations exceed their expected completion time [19], with on-time operations classified as Useful.

Observation 4. Cache and memory stalls significantly impact all AMM algorithms,
particularly in larger datasets, with memory stalls been a key issue.

In Table 5, we delve into the scalability of AMM algorithms across a spectrum of dataset sizes, including
ECO, UTM, and BUS. A key finding is the pronounced impact of cache and memory stalls on all AMM
algorithms and MM baselines, particularly in larger datasets, where memory stalls emerge as a critical
bottleneck. For instance, FASTJLT sees nearly all its processor cycles consumed by memory stalls in
the BUS dataset, underscoring the heavy data demands of matrix operations.

Memory access and the resulting cache performance issues scale with dataset size, evident in the
stark increase from 21.91% of affected cycles in ECO to 99.99% in BUS for SMP-PCA. Memory
stalls notably surpass cache stalls in magnitude across most algorithms, such as FASTJLT on BUS,
due to LibTorch’s cache optimizations aligning well with algorithms that utilize contiguous data
structures. Conversely, algorithms like CS and VQ face greater challenges due to their access patterns
to disjoint data structures. Furthermore, computational challenges compound for algorithms like
COOFD and PQ in large datasets, with a significant portion of their processing time hampered by
computational stalls—evident in the substantial delays faced by these algorithms on BUS. These
observations suggest that while memory stalls are a universal bottleneck, especially in larger datasets,
computational efficiency remains a critical consideration for certain AMM algorithms.

Figure 3 further reveals the escalation of memory stall cycles with data size, aligning with increases
in processing latency (l) as demonstrated in Figure 1(a). The surge in memory stalls, particularly
observed in LTMM with over 71× growth from 1000 to 2500 rows, highlights the critical point of
memory bandwidth utilization. Pruning-based and hybrid AMM algorithms, notably SMP-PCA and
RIP, excel in mitigating this memory stall growth, outperforming even LTMM by maintaining stall
cycles within manageable limits up to 50000 rows. This contrasts with extraction-based algorithms,
which exhibit higher memory stall cycles due to their more intensive memory usage.

Observation 5. Adapting AMM to GPUs shows promise but is limited by data transfer
costs, highlighting the need for optimized hardware-software integration.
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Algorithms Smallest Dataset ECO (207× 260) Moderate Dataset UTM (1700× 1700) Moderate Dataset RDB (2048× 2048) Largest Dataset BUS (4929× 10595)
CPU Only GPU Mode Data Transfer CPU Only GPU Mode Data Transfer CPU Only GPU Mode Data Transfer CPU Only GPU Mode Data Transfer

CRS 0.13 3.29 0.83 0.55 1.29 0.8 0.63 1.21 0.74 1.1 1.37 0.91
SMP-PCA 1.21 3.16 1.5 1.65 1.46 0.73 1.66 3.53 1.49 4.5 3.69 1.73
LTMM 0.11 3.29 1.55 0.18 1.16 0.72 10.99 3.18 1.45 61.55 3.3 1.57

Table 6: The processing latency of combing AMM with GPU acceleration, the unit is (×103ms). Data
Transfer refers to the processing latency of data transferring between CPU and GPU under GPU
Mode. Accuracy metrics ϵ is omitted, as it is the same as Table 4 and not changed by GPU utilization.

In our exploration of AMM’s potential with hardware advancements, we experimented with pruning-
based CRS and hybrid SMP-PCA algorithms, alongside the LTMM baseline, on a GPU-capable
setup, i.e., one I7-13700K CPU and one RTX A6000 GPU. By switching LibTorch’s backend from
CPU to CUDA, without altering the LibAMM codebase, we analyzed the performance across four
datasets: ECO, UTM, RDB, and BUS, as presented in Table 6.

Our study shows that moving AMM algorithms to GPUs can speed up processing, but data
transfer costs between CPU and GPU largely limit these benefits. For instance, while LTMM
benefits significantly from GPU acceleration, achieving up to a 95% reduction in processing latency,
AMM algorithms like SMP-PCA only manage an 18% latency reduction. This discrepancy underscores
the inefficiency in harnessing GPU computational power for AMM, largely due to the overhead from
moving data. Notably, at larger scales, such as with the BUS dataset, SMP-PCA demonstrates a better
fit for GPU acceleration than CRS, owing to its superior handling of memory operations. However, the
overarching challenge remains the memory bottleneck, particularly the penalty from pending memory
operations within the GPU and the substantial latency incurred during CPU-GPU data transfer—often
accounting for about 50% or more of the total processing time in most cases evaluated. To summarize,
the main obstacle to fully leveraging GPU acceleration for AMM is not computational capacity but the
efficiency of data movement, signaling an urgent call for innovative hardware-software co-designs
that can effectively reduce memory overhead and optimize AMM performance.

3.3 Dataset Attributes

In this section, we explore how two key dataset attributes—skewed numeric values and biased
Non-zero (NNZ) regions—affect AMM approximation accuracy (ϵ). These attributes are common in
real-world datasets and can introduce significant challenges for AMM algorithms. We use synthetic
datasets to systematically isolate and evaluate their impact, with a focus on ϵ as latency variations
among the algorithms were found to be negligible.

3.3.1 Skewed Numeric Values

Skewed numeric values refer to a distribution where numerical data is unevenly distributed, often
resulting in a heavy tail, with a small number of values occurring frequently and dominating the
dataset. To assess how skewed numeric values affect AMM algorithms, we designed experiments using
two matrices of size 2500 × 2500. Matrix B was generated using a uniform random distribution
(torch::rand), while matrix A was crafted to exhibit skewed numeric values by applying a Zipf
distribution using torch::pow and torch::multinomial. We adjusted the skewness factor of the Zipf
distribution from 1 to 2, gradually increasing the prevalence of a small set of dominant values. After
this transformation, matrix A was normalized to match matrix B in the range [0, 1].

Observation 6. AMM exhibits stable accuracy unless large numeric value skewness.

Figure 4 shows the impact of skewed numeric values on ϵ. As the Zipf factor increases beyond 1.6,
only a subset of algorithms (INT8, BLOCKLRA, COOFD, VQ, and PQ) are able to maintain
ϵ below the critical 0.5 threshold. For the remaining algorithms, error rates rise sharply, often
exceeding 0.8, as skewness intensifies. This result highlights the pronounced sensitivity of most
AMM algorithms to highly skewed datasets, with none exhibiting a boundary condition specifically
designed to mitigate such effects.

3.3.2 Biased Non-zero (NNZ) Regions

Biased Non-zero (NNZ) regions describe matrices in which non-zero elements are disproportionately
concentrated in specific areas, creating "active" regions, while large portions of the matrix remain
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Algorithms Processing Latency l (×102ms) AMM Error ϵ Approximation Impact Factor ∆E
PCA MLT(500D) MLT(2000D) MLI UT PCA MLT(500D) MLT(2000D) MLI UT PCA MLT(500D) MLT(2000D) MLI UT

Pruning-based
INT8 0.76 14.52 139.06 0.07 69.22 0.0541 0 0 0.03 0.1701 0 0.0011 -0.0018 0.0001 0.3968
CRS 0.55 94.32 100.43 0.01 10.93 0.4044 1.1099 1.8021 1.3933 0.0553 0.108 0.0483 0.0838 0.2558 0.0048
CS 2.76 234.47 366.83 0.25 13.41 0.3876 0.8705 2.0562 1.3751 0.1046 0.0679 0.0577 0.0778 0.3008 0.0213

Extraction-based

COOFD 4639.36 778.72 749.23 0.35 10361.91 0.2002 0.0683 0.1308 0.975 0.0079 0 0.0065 0.0091 0.6799 0.0191
BLOCKLRA 9.67 2453.32 6281.38 4.62 355.13 0.524 0.0186 0.0283 0.9325 0.0031 0.1582 0.0009 -0.0019 0.6346 0.0052
FASTJLT 86.16 50.72 2020.93 0.49 759.58 0.4408 0.9808 2.5515 1.6057 0.144 0.106 0.0608 0.0862 0.3603 0.2390
VQ 12.27 N.A. N.A. 33.56 1104.09 0.6341 N.A. N.A. 0.9394 1.0024 0.3506 N.A. N.A. 0.6869 1.0000
PQ 61.99 N.A. N.A. 2.96 2236.02 0.9989 N.A. N.A. 1 1.0159 0.8671 N.A. N.A. 0.6948 1.0000

Hybrid

RIP 8.8 19.87 98.43 0.04 21.86 0.4148 1.0116 1.9446 1.3913 0.0562 0.1186 0.0558 0.0596 0.319 0.0265
SMP-PCA 6.77 44.62 369.23 0.07 31.84 0.4459 0.8641 1.9863 1.464 0.0307 0.0789 0.0589 0.0707 0.2007 0.0003
WEIGTHEDCR 2.51 23.62 133.13 0.14 17.78 0.4479 2.4964 5.2984 1.3469 0.0574 0.0963 0.0623 0.0335 0.2883 0.0041
TUGOFWAR 78.88 284.42 736.13 0.39 404.3 0.3882 0.6275 1.6422 1.4119 0.1132 0.0752 0.0594 0.0914 0.3693 0.3535

Baselines NLMM 16.8 6690.52 19744.48 14.74 14328.68 0 0 0 0 0 0 0.0011 -0.0018 0 0
LTMM 1.28 14.52 141.98 0.08 213.36 0 0 0 0 0 0 0 0 0 0

Table 7: Evaluation on applying AMM to downstream tasks. MLT, MLI and UT are abbreviations for
Machine Learning Training, Machine Learning Inference and Unitary Transformation, respectively.
VQ and PQ are excluded in MLT due to the ≥ 107ms overhead of codebook rebuilding.

sparse or filled with zeros. To explore the impact of biased NNZ regions, we generated a 2500×2500
matrix A initialized with zeros using torch::zero. We then introduced localized non-zero regions by
populating the top-left sub-matrix with random values from torch::rand. By varying the percentage
of rows and columns populated with non-zero elements from 10% to 100%, we simulated varying
degrees of bias in the NNZ regions.

Observation 7. The biased NNZ regions influence AMM accuracy less significantly
than skewed numeric distributions, with the notable exception of WEIGTHEDCR.

As shown in Figure 5, ϵ increases for all evaluated algorithms as NNZ bias intensifies. However,
the impact of NNZ bias is generally less severe than that of skewed numeric values. For most
algorithms, ϵ remained below 0.26, with the exception of WEIGTHEDCR, which showed significantly
higher error rates due to its sampling-based approach and reliance on median value calculations,
making it particularly vulnerable to localized NNZ concentrations.

3.4 Downstream Tasks

The outcomes of applying AMM to four downstream tasks are detailed in Table 7, where the
approximation impact factor of AMM (∆E) is assessed through various application-specific errors. For
example, reduced PCA approximation quality and increased relative error of probability calculation
gauge the impact on PCA and Unitary Transformation tasks, respectively, and increased classification
error for evaluating neural network performance in training and inference phases.

Observation 8. Pruning-based and hybrid AMM outperform extraction-based AMM in
diverse downstream tasks, highlighting the need for task-aligned approximation.

Pruning-based and hybrid AMM strategies excel in reducing processing latency across various
tasks, notably outperforming extraction-based methods in efficiency while maintaining
acceptable error rates. This is evident as INT8 and CRS significantly lower LTMM’s processing
latency, for instance, by up to 94% in unitary transformations, albeit with slight increases in error
metrics. Hybrid approaches like SMP-PCA and RIP further demonstrate their capability to enhance
processing speeds with larger matrices involved, such as in machine learning training and inference,
showcasing a balanced trade-off between efficiency and error management. Conversely, extraction-
based AMM generally lead to increased processing times and higher errors, highlighting a potential
mismatch in their approximation strategies with the application requirements.

AMM’s numerical approximation focus can lead to semantic information loss, particularly
in consecutive applications or nuanced interpretation tasks. Extraction-based algorithms
(BLOCKLRA, VQ, and PQ) exhibit higher ϵ in precision-centric tasks like PCA, where their
feature extraction does not align with the task’s principal data characteristics, leading to elevated
∆E. For example, these algorithms significantly increased ∆E in PCA due to mismatches in
feature representation. The impact of AMM on machine learning training and inference highlights the
importance of semantic preservation, which is often overlooked by current approximation strategies.
In training, CRS’s ∆E escalated from 0.05 at a 500-D hidden layer to 0.08 at 2000-D, indicating
a greater risk of information loss with larger matrices. Similarly, in inference, extraction-based
methods (COOFD, BLOCKLRA, VQ, and PQ) failed to preserve semantic details, with COOFD’s
∆E reaching 0.68. These findings underscore that AMM’s numerical approximation focus can lead to
semantic information loss, particularly in consecutive applications or nuanced interpretation tasks.
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However, SMP-PCA’s resilience to error amplification in unitary transformations signals a potential
for AMM strategies to achieve numerical and semantic fidelity.

4 Related Work

While AMM has been theoretically well-explored [21, 25, 13, 1, 9, 31, 29, 2, 22, 7, 17, 34, 36, 16, 6, 23],
there exists a gap in benchmarks that evaluate these algorithms’ performance in diverse real-world
applications, particularly emphasizing accuracy alongside computational efficiency. Prior research has
illustrated AMM’s potential in specific tasks; however, these analyses often lack a holistic evaluation
that considers various performance metrics [14, 34]. Our contribution aims to bridge this gap
by offering an in-depth comparison of AMM algorithms across a range of practical tasks, thereby
providing insights into their applicability and efficiency in real-world scenarios. Our approach sets a
new precedent in the study of AMM by amalgamating an extensive array of algorithms and applications,
moving beyond traditional theoretical assessments to explore their practical utility. By adopting a
comprehensive benchmarking strategy, we illuminate the strengths and limitations of AMM, facilitating
a richer understanding of its potential for enhancing computational processes. This endeavor not only
aids in theoretical exploration but also enhances practical applications, marking a significant step
forward in the evolution of AMM research.

5 Conclusion

This study sheds light on the impactful nuances of AMM algorithms within real-world applications.
Our takeaways and inspirations for future works can be summarized as follows.

Summary of Observations. There are three major findings throughout this study. First, pruning-
based (e.g., INT8, CRS) and hybrid (e.g., RIP, SMP-PCA) AMM outperform extraction-based AMM,
especially in various downstream tasks (O1, O2, O8). Second, memory overhead is a common
bottleneck, while some AMM (e.g., CRS, SMP-PCA) do succeed in optimizing memory access, the
high cost of data transfer still limits border applications of AMM (O4, O5). Third, the tradeoff space
between accuracy and efficiency is wide for some AMM (e.g., CRS, SMP-PCA) yet narrow for others
(e.g., BLOCKLRA). It is further challenged by data distributions, and the existing error bound of AMM
is not strong enough under severe skewness or bias of data distribution (O3, O6, O7).

Impacts and Future Directions. Our empirical insights offer a more comprehensive understanding
of the strengths and limitations in current AMM to data science communities. Future work on AMM
could further reduce the memory overhead while strengthening the error bound guarantees. We also
envision a versatile and robust software-hardware co-design to better incorporate AMM with orthogonal
optimizations, i.e., algorithmic design [32], parallel and distributed computing [26], and hardware
technology [18], to better cater to the evolving demands of diverse computational landscapes.
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Algorithms PCA MLT(500D) MLT(2000D) MLI UT

Pruning-based
INT8 0.1323 0.0186 0.0166 0.2953 0.3968
CRS 0.2403 0.0658 0.1022 0.5510 0.0048
CS 0.2002 0.0752 0.0962 0.5960 0.0213

Extraction-based

COOFD 0.1323 0.0240 0.0275 0.9751 0.0191
BLOCKLRA 0.2905 0.0184 0.0165 0.9298 0.0052
FASTJLT 0.2383 0.0783 0.1046 0.6555 0.2390
VQ 0.4829 N.A. N.A. 0.9821 1.0000
PQ 0.9994 N.A. N.A. 0.9900 1.0000

Hybrid

RIP 0.2509 0.0733 0.0780 0.6142 0.0265
SMP-PCA 0.2112 0.0764 0.0891 0.4959 0.0003
WEIGTHEDCR 0.2286 0.0798 0.0519 0.5835 0.0041
TUGOFWAR 0.2075 0.0769 0.1098 0.6645 0.3535

Baselines NLMM 0.1323 0.0186 0.0166 0.2952 0.0000
LTMM 0.1323 0.0175 0.0184 0.2952 0.0000

Table 8: Application errors E of AMM or MM. MLT, MLI and UT are abbreviations for Machine
Learning Training, Machine Learning Inference and Unitary Transformation, respectively. VQ and
PQ are excluded in MLT due to the ≥ 107ms overhead of codebook rebuilding.

A Details of Downstream Tasks

We discuss the details of four selected downstream tasks in the following. The application errors (E)
when applying AMM or MM on those downstream tasks are summarized in Table 8.

Principal Component Analysis (PCA). PCA is a popular statistical function for dimensionality
reduction [33, 30]. It computes the rank-r approximation of a matrix A as Âr, and the application
error E is defined as E = ||A − Âr||/||A||. PCA is required to compute the covariance matrix,
and the involved MM can be replaced by AMM. We conducted the PCA task on the SIFT10K dataset
following the methodology outlined in [34]. Because the number of rows is exceptionally small (128)
in comparison to the substantial column count (10000), the tuning parameter ω is configured at 10%
for PQ and VQ, as their adjustment is row-relevant (Section 2.3). For the remaining AMM, we set ω to
1%.

Machine Learning Training. We implement the methodology outlined in prior work [1],
incorporating AMM techniques into three fully connected layers of an MLP model during the machine
learning training. We use different configurations of hidden layer dimensions in our evaluation, i.e.,
500-D and 2000-D, which involve relatively smaller and larger weight matrices, respectively. There
are thousands of Stochastic Gradient Descent (SGD) iterations in training, and each SGD iteration
utilizes AMM to forward the training loss before randomly updating the weight matrices. We report
the average ϵ of first 10 SGD iterations during training, as they are most meaningful for the training
task. The E is referred to as the classification error in validating neural networks [1]. We exclude
VQ and PQ, because they necessitate costly rebuilding of the entire codebook from scratch for each
new version of the weight matrix, and it requires 107 ms l for building codebook 1000 times even in
500-D hidden layer case.

Machine Learning Inference. For inference, we apply AMM to the final dense layer in the pre-trained
model discussed in [6] and set ω to 2.56%. The machine learning model also works as classifiers in
[6], and the meaning of E is the same as that in the case of machine learning training. We employ
CIFAR100 datasets as the illustration example.

Unitary Transformation. Unitary transformation is one of the key operations in the scientific
computing of quantum physics [15, 10], and it is also the building block of more sophisticated
quantum transformations, such as the canonical transformation in Quantum Zero-Sum Games [20].
Specifically, it transforms the quantum state matrix q into Q by two consecutive MM with a unitary
gate. All of these MM are possible to be replaced by AMM, which transforms q into Q̂ instead of Q. We
report the average ϵ of these two multiplications. Q2 is proportional to the probability of collapsing
into specific classic states when measured, and E is hence formulated as E = ||Q2 − Q̂2||/||Q2||.
For illustration purposes, we instantiate q as one of the QCD matrices, let the unitary gate exhibit
Gaussian distributions [5], and ignore the normalization constants.
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